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Abstract: The lack of interpretability in artificial intelligence models (i.e., deep learning, machine
learning, and rules-based) is an obstacle to their widespread adoption in the healthcare domain. The
absence of understandability and transparency frequently leads to (i) inadequate accountability and
(ii) a consequent reduction in the quality of the predictive results of the models. On the other hand,
the existence of interpretability in the predictions of AI models will facilitate the understanding and
trust of the clinicians in these complex models. The data protection regulations worldwide emphasize
the relevance of the plausibility and verifiability of AI models’ predictions. In response and to take a
role in tackling this challenge, we designed the interpretability-based model with algorithms that
achieve human-like reasoning abilities through statistical analysis of the datasets by calculating the
relative weights of the variables of the features from the medical images and the patient symptoms.
The relative weights represented the importance of the variables in predictive decision-making. In
addition, the relative weights were used to find the positive and negative probabilities of having
the disease, which indicated high fidelity explanations. Hence, the primary goal of our model
is to shed light and give insights into the prediction process of the models, as well as to explain
how the model predictions have resulted. Consequently, our model contributes by demonstrating
accuracy. Furthermore, two experiments on COVID-19 datasets demonstrated the effectiveness and
interpretability of the new model.

Keywords: interpretability; artificial intelligence; relative weights; probability

1. Introduction

In recent years, with the development of artificial intelligence (AI), machine learning
(ML), and deep learning (DL), technologies have achieved great success in computer vision,
natural language processing, speech recognition, and other fields. ML models have also
been widely applied to vital real-world tasks, such as face recognition [1,2], malware
detection, and smart medical analysis [3]. Although AI outperforms humans in many
meaningful tasks, its performance and applications have also been questioned due to the
lack of interpretability [4]. The model is interpretable because it is small and basic enough
to be completely comprehended. Ideally, the user should understand the learning process
well enough to realize how it forms the decision limits from the training data and why the
model has these rules [5]. For ordinary users, the machine-learning model, particularly the
deep neural networks (DNN) model, is similar to a black box. We give it an input, and
it feeds back a decision result. No one can know exactly the decision basis behind it and
whether the decisions it makes are reliable. With the wide applications of AI solutions in
healthcare, it becomes increasingly critical to improve the understanding of the working
mechanism of the model and publish the white box of artificial intelligence [6]. Building
trust in the machine-learning models has become a prerequisite for the ultimate adoption
of AI systems. Hence it is crucial to improve model transparency and interpretability,
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specifically in high-risk areas that require reliability and security, e.g., healthcare. Due to
an incomplete understanding of the working mechanism of the model, the model may
produce results inconsistent with medical institutions, resulting in negative consequences
in specific cultures and contexts. Based on the interpretable method, it is possible to clarify
how the model makes each decision. Hence, each output result can be traced back, and the
model results are more controllable [7]. To improve the interpretability and transparency of
the machine-learning models, there is a need to establish a trusting relationship between
users and decision-making models in practical deployment applications [8]. Therefore, to
contribute to tackling the interpretability challenge, we designed a new interpretability
model to explain the reasoning behind the prediction of the AI models in the healthcare
domain. The basic principle of the new model is based on the statistics and probability rules
by finding the relative weights of the variables which represent their relative importance
in determining the prediction and the probability of having the disease. The positive
likelihood ratio (+LR) indicates how likely it is that the patient has COVID-19, given
a positive test result [9]. Similarly, the negative likelihood ratio (−LR) indicates how
likely it is that the patient does not have COVID-19, given a negative test result [9]. The
variables are either the symptoms of the patient or the characteristics of the affected parts
of the organ as shown in a medical image. Calculating the relative weights is performed
by dividing the weight of each variable by the sum of all weights of the variables in
the dataset. Subsequently, the probability of positive infection is calculated by adding
the related relative weights of the (i) characteristics of the affected parts of the organ as
shown in a medical image or (ii) the symptoms of the patient. Our model contains two
interpretability algorithms. Specifically, our model shows an alternative solution of deep
learning and rules-based algorithms based on the relative weights of the variables of the
healthcare diseases.

The rest of this paper is organized as follows. In Section 2, we review the background
techniques that are rooted in a strong theoretical foundation. Section 3 explores the state of
the art in addition to the related works and their limitations. In Section 4, we design the
algorithms that create the explanations. In Section 5, the new model is validated by a real
dataset. Section 6 discusses the solutions that our model provides. Finally, the conclusion
and recommendations appear in Section 7.

2. Motivation

Healthcare presents particular ethical, legal, and regulatory problems since decisions
can have an immediate impact on people’s well-being or lives [10]. One of the major
implementation challenges highlighted is the inability to explain the decision-making
progress of AI systems to physicians and patients [10]. Clinicians must be confident that
AI systems can be trusted because they must provide the best treatment to each patient.
Therefore, developing interpretable models might be a step toward trustworthy AI in
healthcare. The area of explainable AI seeks to gain knowledge into how and why AI
models make predictions while retaining high levels of predictive performance. Although
the interpretability of AI models holds significant promises for health care, it is still in its
early stages. Among other things, it is unclear what constitutes a sufficient explanation
and how its quality should be assessed. Furthermore, the benefit of interpretability of AI
systems has yet to be demonstrated in reality [11].

In this paper, we contribute to the larger goal of creating trustworthy AI models in
healthcare, by designing a new model that is added to the state of the art of interpretability
techniques as a contribution that implements statistics and probability rules to produce
accurate interpretations for the predictions of the AI algorithms.

3. Background: Statistics and Probability Techniques

In general, the interpretability-based model is based on statistics and probabilities
rules to train the datasets.
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We distinguish two interpretability strategies that adopt probabilities in their findings
with solid theoretical backgrounds and are easy to implement: the Locally Interpretable
Model-Agnostic Explanations (LIME), and (ii) the Deep Learning Important FeaTures.

3.1. Locally Interpretable Model-Agnostic Explanations (LIME)

Ribeiro et al. [12] introduced a surrogate model that uses a trained local model to
interpret a single sample. However, the black-box model is explained by taking an instance
sample of interest, performing disturbance near it to generate new sample points, and
obtaining its predicted value. LIME uses the new dataset to train an interpretable model
(such as linear regression or a decision tree) to obtain a near-local approximation to the black-
box model. LIME consists of two parts, LIME, and SP-LIME, while LIME approximates the
model with a fidelity method, SP-LIME is used to select non-redundant instances (basically
covering all features) to explain the global behavior of the model. Additionally, LIME
can interpret the classification results of the medical image and can also be applied to
related tasks of natural language processing, such as topic classification, part-of-speech
tagging, etc. Because the starting point of LIME itself is model-independent, it has broad
applicability [13].

3.2. Deep Learning Important FeaTures or DeepLIFT

DeepLIFT is a method for dissecting the output prediction of the neural network on a
given input by backpropagating the contributions of all neurons in the network to each
characteristic of the input. DeepLIFT assigns value to neurons depending on their activity.
When the local gradient is zero, the findings might be deceptive. DeepLIFT produces
surprisingly distinct attribution maps from input CT images with minor perturbations that
are visually identical. Moreover, DeepLIFT can also show dependencies that other methods
overlook by distinguishing between the negative and positive contributions [14].

3.3. Definition of Concepts

Some neighboring concepts are occasionally used as synonyms for transparency, in-
cluding interpretability, explainability, and understandability [15]. However, there is a
subtle difference between explainability and interpretability. The model is considered
inherently interpretable if a person can comprehend its underlying workings, either the
complete model at once or at least the elements of the model relevant to a specific pre-
diction. It may include understanding decision criteria and cut-offs and the ability to
compute the model’s outputs manually. In contrast, we consider the model’s prediction
explainable if a process can offer (partial) knowledge about the model’s workings. These
details include identifying which elements of input were most significant for the resulting
forecast or which adjustments to input would result in a different prediction [5]. Moreover,
transparency implies that the behavior of artificial intelligence and its related components
are understandable, explainable, and interpretable by humans. Besides, understandability
means that the decisions made by the artificial intelligence model can reach a certain degree
of understanding [16].

Before introducing specific interpretability problems and corresponding solutions,
we briefly introduce what interpretability is and why it is needed. Data mining and
machine-learning scenarios define interpretability as the ability to explain and present
understandable terms to humans [17]. In essence, interpretability is the interface between
humans and the decision model, which is both an accurate proxy for the decision model
and understandable by humans [18]. In top-down machine learning, which builds models
on a set of statistical rules and assumptions, interpretability is critical because it is the
cornerstone of the defined rules and assumptions. Furthermore, model interpretability
is a critical means of verifying that the assumptions are robust and that the defined rules
are well suited to the task. Unlike top-down tasks, bottom-up machine learning usually
corresponds to the automation of manual and onerous tasks. Given a batch of training data,
the model automatically learns the input data and output categories by minimizing the
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learning error in the mapping relationship between them. In bottom-up learning tasks,
the model is built automatically, so we do not know its learning process or its working
mechanism. Therefore, interpretability aims to help people understand how a machine-
learning model learns [8].

4. State of the Art
4.1. Related Works

In recent years (2016–2022), the interpretability of the various artificial intelligence
models has attracted great attention from the academic and business sectors. Researchers
have successively proposed several interpretation methods to solve and enhance the model
“black box” problem. We distinguished three interpretability categories that have char-
acteristics, advantages, and disadvantages. Rules-based interpretation models: A linear
method was proposed in [19] by adding regularization to the tree, reducing the nodes
of the decision tree, and solving the problem of a vast number of nodes without losing
accuracy. An interpretable tree framework was proposed in [20] which can be applied to
classification and regression problems by extracting, measuring, pruning, and selecting
rules from tree collections and computing frequent variable interactions. This model also
forms a rules-based learner, a reduced tree ensemble learner (STEL), and uses it in predic-
tion. A method was proposed in [21] that learns rules to globally explain the behavior of
black-box machine-learning models used to solve classification problems. It works by first
extracting the important conditions at the instance level and then going through a genetic
algorithm with suitable fitness-function rules. These rules represent the patterns in which
the model makes decisions and help to understand its behavior.

4.2. Bayesian Nonparametric Approach

Guo et al. [11] designed a Bayesian nonparametric model to define an infinite-dimensional
parameter space. In other words, the size of this model can adapt to the change in the AI
model as the data are increased or decreased. This model can be determined according to
how many data parameters are selected. It only needs a small assumption to learn data
and perform clustering. The increasing data also can be continuously aggregated into
corresponding classes. At the same time, this model also performs predictions. According
to the specific learning problem, a spatial data model composed of all parameters related to
this problem can be solved.

4.2.1. GAM

A global variable generalized additive weight method called GAM was proposed
in [4], which accounts for the pattern of neural-network predictions of swarms. The global
interpretation of GAM describes the nonlinear representation learned by the neural network.
GAM also provides adjustable subpopulation granularity and the ability to track global
interpretations for specific samples.

4.2.2. MAPLE

MAPLE may be used nearly identically as an explanation for a black-box model or as
a predictive model; the main difference is that in the first instance MAPLE is fitted to the
black-box model’s prediction, whilst in the second situation MAPLE is fitted to the response
variable. MAPLE has various intriguing feature LIMEs, which are mentioned below: (i) It
avoids the trade-off between model performance and model interpretability since MAPLE
is a highly accurate predictive model capable of generating correct predictions. (ii) It finds
global trends by using local examples and explanations. MAPLE stands out from other
interpretability frameworks due to its training distributions [22].

4.2.3. Anchors

Anchors is a model-independent, rule-based local explainer approach [23]. Anchors
ensure that the forecasts of occurrences in the same anchor are nearly identical. In other
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words, anchors identify the qualities that are sufficient to correct the forecast while modify-
ing the other attributes that do not affect the prediction. The bottom-up approach, in which
anchors are built sequentially, is one method of anchor construction. Anchors, in particular,
begin with an empty rule and extend it with one feature in each iteration until the resulting
rule has the greatest estimated accuracy [23].

4.2.4. SHAP

A game theory concept was used to quantify the impact of each feature on the pre-
diction process. The Shapley value [24] is a mechanism from coalitional game theory that
can properly distribute benefits across players (features) when players’ contributions are
uneven. In other words, Shapley values are founded on the assumption that characteristics
work together to influence the model’s prediction toward a specific value. It then attempts
to distribute its contributions fairly across all featured subsets. Shapley value, in particular,
distributes the difference between prediction and average prediction equitably among
the feature values of the instance to be explained. Shapely value fulfills three intriguing
features [25].

4.2.5. Perturbation-Based Methods

Perturbation is the most basic method for examining the impact of modifying an AI
model’s input properties on its output. This can be accomplished by eliminating, masking,
or changing specific input variables, then conducting the forward pass (output calculation)
and comparing the results to the original output. This is comparable to the sensitivity
analysis conducted in parametric control system models. The input features that have
the greatest influence on the output are ranked first. It is computationally intensive since
a forward pass must be performed after perturbing each collection of characteristics in
the input [26]. In the case of picture data, the perturbation is accomplished by covering
sections of the image with a grey patch and thereby obscuring them from the system’s
perspective. It can give both positive and negative evidence by identifying the responsible
characteristics [27].

4.2.6. Attention Based

The fundamental concept of attention is motivated by the way people pay attention to
various areas of a picture or other data sources in order to interpret them. The technique
employed attention mechanisms to show the detection process, which included an image
model and a language model [28]. The language model discovered dominant and selective
characteristics to learn the mapping between visuals and diagnostic reports using that
attention mechanism [26].

4.2.7. Concept Vectors

A unique approach was developed in [29] called Testing Concept Activation Vectors
(TCAV) to explain the characteristics learnt by successive layers to domain experts who
do not have deep-learning knowledge in terms of human-understandable concepts. It
used the directional derivative of the network in idea space, similar to how saliency maps
use it in input feature space. It was put to the test to explain DR level predictions, and it
effectively recognized the existence of microaneurysms and aneurysms in the retina. This
gave medical practitioners with explanations that were easily interpretable in terms of the
existence or absence of a specific notion or physical structure in the image. [26]. Many
clinical notions, such as the texture or form of a structure, cannot be adequately defined in
terms of presence or absence and require a continuous scale of assessment.

4.2.8. Similar Images

In [30], research was proposed analyzing layers of a 3D-CNN using a Gaussian
mixture model (GMM) and binary encoding of training and test pictures based on their
GMM components to yield comparable 3D images as explanations. As an explanation for
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its conclusion, the algorithm returned activation-wise similar training pictures utilizing
atlas. It was proven on 3D MNIST and an MRI dataset, where it yielded pictures with
identical atrophy conditions. However, it was shown that in some circumstances, activation
similarity was dependent on the spatial orientation of pictures, which might influence the
choice of the returned images [26].

4.2.9. Textual Justification

This model explained its decision in terms of words or phrases that describe its logic
and may communicate directly with both expert and ordinary users [26]. A justification
model that utilized inputs from the classifier’s visual characteristics, as well as prediction
embeddings, was used to construct a diagnostic phrase and visual heatmaps for breast-
mass categorization [31]. In order to develop reasons in the presence of a restricted quantity
of medical reports, the justification generator was trained using a visual word constraint
loss [26].

4.2.10. Intrinsic Explainability

Intrinsic explainability explains its decisions in terms of human visible decision lim-
its or variables. For a few dimensions where the decision boundaries can be viewed,
they generally comprise relatively simpler models such as regression, decision trees, and
SVM [32].

4.2.11. Recurrent Neural Network (RNN)

Ref. [33] proposed RNN model that combined a two-layer attention mechanism for
sequential numbers according to the data. The method gave a detailed explanation of the
prediction results and retained the relative accuracy of RNN.

4.3. Limits of the Existing Solutions

Significant progress has been made in explaining the decisions of the AI models, par-
ticularly those implemented in medical diagnosis. Understanding the features responsible
for a particular prediction helps model designers iron out dependability problems so that
end users may acquire trust and make better decisions [26]. Almost all of these strategies
aim towards local explainability or justifying decisions in a particular case. However, it is
essential to consider the characteristics of a black-box that might make the wrong decision
for the wrong reason. It is a significant issue that can have an impact on performance when
the system is implemented in the real world [26].

Moreover, when considering the above interpretability methods, there is a lack of
quantitative judgments, which indicates their low explanation fidelity. The AI algorithms
in the healthcare domain make their decisions in the domain of positive or negative test
results, which explains their low accuracy [34]. However, there is a need to make explain-
ability approaches more comprehensive and intertwined with uncertainty methods [26].
Moreover, it is essential to consider the characteristics of a black-box that might make the
wrong decision for the wrong reason as it is a significant issue that can have an impact
on the performance when the system is implemented in the real world [26]. In response
and to take a role in tackling these challenges, we contribute to the field by designing
an interpretability-based model which explains the predictions of the AI algorithms in
healthcare. This approach simulates human-like reasoning abilities and makes the ex-
planations by describing the various features of the medical image and the symptoms of
the patient. We validate our model by performing experiments on COVID-19 datasets
to demonstrate its effectiveness and interpretability. Table 1 shows the limitations of the
existing interpretability methods.
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Table 1. The limitations of the existing interpretability methods.

Method Feature Importance Model-Independent Individualized
Feature Importance

Identifying the Set of
Relevant Features for

Each Instance

LIME
√ √

DeepLIFT
√ √

SHAP
√ √

Recurrent Neural
Network (RNN)

√ √

MAPLE
√ √

GAM
√ √ √

Rules-based
interpretation models

√

Anchors
√

Textual justification
√ √

Bayesian
nonparametric

approach

√ √ √

Intrinsic
explainability

√

Similar images
√ √

5. The Interpretability-Based Model

The core principle of the new model is the using of the statistics and probability
rules to train the datasets, by finding the relative weights of the variables which represent
their relative importance in determining the prediction and the probability of having the
disease. The variables are either the symptoms of the patient or the characteristics of the
affected parts of the organ as shown in the medical image. Calculating the relative weights
is performed by dividing the weight of each variable by the sum of all weights for all
variables. Subsequently, the result of training the dataset is the likelihoods of positive
infection. Our model contains two interpretability algorithms for training the datasets. The
first is to interpret the predictions of the neural-networks models, shown in Figure 1. The
second explains the decisions of the rules-based models more precisely, as shown in Figure 2.
The new model generates the predictions and their predictive values by executing three
steps as shown in Figure 3 (i) inputting the dataset: the classification features of the medical
image dataset or the symptoms of the patient dataset; (ii) data preprocessing: defining the
variables which include the symptoms and the characteristics of the classification features
for the medical image; (iii) finding the relative weight of each variable using the formula:

Relative weight =
Weight o f the variable

∑ Weights o f all variables

(iv) finding the probabilities: calculating the negative and positive probabilities for
each explanation using the formulas:

+LR = ∑Relative weights of the variables

−LR = 1 − (+LR)
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5.1. Dataset Requirements

The datasets must be labeled and representative. They must include all the salient fea-
tures of the disease’s medical image and the symptoms. Furthermore, they should include
the counting details, i.e., the number of variables with specific descriptions, characteristics,
and values.

5.2. Defining the Variables

The variables of the interpretable-based model are (i) the symptoms of the disease and
(ii) the spatial features of the medical image.

5.3. Relative Weights as Ranking

Explanations contain variables encoded by treating each as a vector in Rn: the relative
weight ranks and considers each variable’s association with a particular prediction. Each
variable is a vector that answers the question: How important is this variable for a particular
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prediction? Or what is the extent for this variable to be in the decision of the machine-
learning model? We treat variables as relative weighted conjoined rankings.
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5.4. Creating the Explanations

The interpretability-based model algorithms use the relative weights of the variables,
to define the average of repetitions of the variables’ characteristics in the dataset, which
measures the relative importance of the variables in the prediction of the AI algorithm.

The outcomes of our model include the positive and negative probabilities of having
the disease.

6. Validating the Interpretability-Based Model

Research in interpretability inherently faces the challenge of effective and reliable vali-
dation [17]. Identifying the appropriate validation methodology for a proposed approach is
an open research question [35]. This paper validates the interpretability-based model using
real datasets for COVID-19 patients. We use one dataset for medical images and another
for symptoms as shown in Tables 2 and 3, respectively.

Table 2. The counting data for the medical image used in the CNN model [36].

Variable (Feature)
Number of Patients (Min Weight of the

Variable =
The number of patients who have the variable

Total number of patients )

Number of Patients (Max Weight of the
Variable =

The number of patients who have the variable
Total number of patients )

Distribution of pulmonary lesions

No lesion 1 (1.7%) 10 (21.2%)

Peripheral 31 (52.4%) 30 (63.8%)

Central 0 (0%) 1 (2.1%)

Diffuse 26 (44.1%) 6 (12.7%)

Involvement of the lung

No involvement 1 (1.7%) 10 (21.2%)

Single lobe 1 (1.5%) 16 (34.0%)

Unilateral multilobe 0 (0%) 2 (2.9%)

Bilateral multilobe 65 (95.6%) 20 (42.5%)
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Table 2. Cont.

Variable (Feature)
Number of Patients (Min Weight of the

Variable =
The number of patients who have the variable

Total number of patients )

Number of Patients (Max Weight of the
Variable =

The number of patients who have the variable
Total number of patients )

GGO 52 (98.1%) 36 (76.5%)

Crazy-paving pattern 42 (62.7%) 17 (36.1%)

Consolidation 51 (75.0%) 12 (25.5%)

Linear opacities 49 (83.1%) 3 (6.3%)

Air bronchogram 27 (50.0%) 8 (17.0%)

Cavitation 0 (0%) 0 (0%)

Bronchiectasis 24 (45.2%) 3 (6.3%)

Pleural effusion 19 (27.9%) 2 (4.2%)

Pericardial effusion 3 (4.4%) 0 (0%)

Lymphadenopathy 0 (0%) 0 (0%)

Pneumothorax 2 (3.8%) 0 (0%)

Table 3. The counting dataset for COVID-19 patients who have at most 13 symptoms [36].

Variable or Symptom No. of Patients
Relative Weight

( The weight of the variable
The total of weights for all variables )

Fever-low (37.3–38.0) 46 41.1%

Fever-moderate (38.1–39.0) 31 27.6%

Fever-high (>39.0) 7 6.2%

Dizziness 2 1.7%

Palpitation 2 1.7%

Nausea and vomiting 4 3.5%

Throat pain 4 3.5%

Headache 8 7.1%

Abdominal pain and diarrhea 14 12.5%

Expectoration 15 13.3%

Dyspnea 18 16.1%

Myalgia 18 16.1%

Chest distress 24 21.4%

Fatigue 38 33.9%

Dry Cough 48 42.8%

The data were gathered from open access data [36] and evaluated to improve clinical
decisions and treatment. There is a total of 112 confirmed COVID-19 patients (range,
12–89 years), including 51 males (range, 25–89 years) and 61 females (range, 12–86 years).
The data is public and available on the web [36].

6.1. Validating Our Model to Interpret the Predictions of the Neural-Networks Model

The neural-networks model is used to provide the predictions for COVID-19 patients
by training the dataset of the chest CT images and making the prediction based on analyzing
the medical image of the tested patient. However, the machine-learning models do not
produce explanations for the predictions.
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The suggested model will provide the interpretation based on the saved counting
data for a set of chest CT images that are shown in Table 2 and Figure 4, where the relative
weights are calculated by dividing the weight of each variable by the sum of all weights.
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symptoms: There was no significant change in the extent and composition of lesions compared with
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We validate the model by applying Algorithm 1 of the interpretability-based model to
the counting data in Table 2, as shown in Figure 2:

(1) Define the variables of the explanation set: distribution of pulmonary lesions (no
lesion, peripheral, central, diffuse), involvement of the lung (no involvement, single
lobe, unilateral multilobe, bilateral multilobe), GGO, crazy-paving pattern, consoli-
dation, linear opacities, air bronchogram, cavitation, bronchiectasis, pleural effusion,
pericardial effusion, lymphadenopathy, and pneumothorax.

(2) Train the dataset by finding the relative weights of the variables as shown in Table 4
and generating all the probable explanations for the patient by finding the sum of the
related relative weights and calculating the positive and negative probabilities using
the following formulas:

−LR + = relative weights of the variables

+LR = 1 − (−LR)

For instance, if the physician suspects a COVID-19 case by applying a deep learning
model on the CT image, they may use the interpretability-based model to explain the
prediction for the patient. In order to do that, they should observe the existing features of
the CT image e.g., GGO, bronchiectasis, pericardial effusion, consolidation, involvement of
the lung (bilateral multilobe), distribution of pulmonary lesions (peripheral). Using our
model, the positive likelihood ratio (+LR) according to Table 4 is:

18.5% + 4.4% + 0.3% + 9.4% + 13.5% + 13.1% = 59.2%

Whereas the negative likelihood ratio (−LR) is:

1 − 59.2% = 40.8%

The physician can explain the likelihood ratios for the patient using the indication of
the relative weights of the symptoms. Table 5 includes all the possible predictions of our
model based on the trained dataset. Where (+) represents the existence of the symptom
and (−) represents its absence.
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Table 4. The variables of the chest CT image, along with their calculated relative weights.

Variable or Feature
Relative Weight

(= The weight of the variable
Total number of weights for all variables )

Distribution of pulmonary lesions

No lesion 3.2%

Peripheral 13.1%

Central 0.3%

Diffuse 5.2%

Involvement of the lung

No involvement 3.2%

Single lobe 5%

Unilateral multilobe 0.4%

Bilateral multilobe 13.5%

GGO 18.5%

Crazy-paving pattern 10%

Consolidation 9.4%

Linear opacities 7.3%

Air bronchogram 6.3%

Cavitation 0%

Bronchiectasis 4.4%

Pleural effusion 2.8%

Pericardial effusion 0.3%

Lymphadenopathy 0%

Pneumothorax 0.3%

6.2. Validating Our Model to Interpret the Predictions of the Rules-Based Models

Generally, the rules-based models provide low explanation fidelity because their
decisions are in the domain of positive or negative results. However, we apply the inter-
pretability rules-based Algorithm 2 to the dataset in Table 3 that includes the symptoms of
COVID-19 patients who have at most 13 symptoms to generate the explanations as shown
in Figure 1 and as in the following:

1. Define the variables of the explanation model which will be the symptoms: Fever,
Dizziness, Palpitation, Throat pain, Nausea and vomiting, Headache, Abdominal
pain and diarrhea, Expectoration, Dyspnea, Myalgia, Chest distress, Fatigue, and
Dry Cough.

2. Train the dataset by calculating the relative weights for the variables by dividing the
ratio weight of each symptom by the sum of all weights, as shown in Table 6, and
generate the explanations for the patient by finding the sum of the related relative
weights and the positive and negative probabilities:

3. −LR + = relative weights of the variables
4. +LR = 1 − (−LR)
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Table 5. All the probable predictions and explanations for COVID-19 patients according to their chest
CT image.

Explanation Distribution of Pulmonary
Lesions Involvement of the Lung

N
um

ber

N
o

Lesion

Peripheral

C
entral

D
iffuse

N
o

Involvem
ent

Single
Lobe

U
nilateralM

ultilobe

B
ilateralM

ultilobe

G
G

O

C
razy–Paving

Pattern

C
onsolidation

Linear
O

pacities

A
ir

B
ronchogram

C
avitation

B
ronchiectasis

PleuralEffusion

PericardialEffusion

Lym
phadenopathy

Pneum
othorax

+LR
(%

)

−
LR

(%
)

1 + + + + + + + + + + + + + + + + + + + 100 0

2 + − + + + + + + + + + + + + + + + + + 86.9 13.1

3 + + − + + + + + + + + + + + + + + + + 99.7 0.3

4 + − − + + + + + + + + + + + + + + + + 94.5 5.5

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

524,287 − + − − − − − − − − − − − − − − − − − 13.1 86.9

524,288 − − − − − − − − − − − − − − − − − − 0 100

‘.’ Represents a probable prediction that is not mentioned.

Table 6. The variables of the chest CT image, along with their calculated relative weights.

Variable or Symptom Relative Weight (= The weight of the variable
Total number of weights for all variables )

Dizziness 0.7%

Palpitation 0.7%

Throat pain 1.4%

Nausea and vomiting 1.4%

High-grade fever (>39.0) 2.5%

Headache 2.9%

Abdominal pain and diarrhea 5%

Expectoration 5.4%

Dyspnea 6.5%

Myalgia 6.5%

Chest distress 8.6%

Moderate-grade fever (38.1–39.0) 11.1%

Fatigue 13.6%

Low-grade fever (37.3–38.0) 16.5%

Dry Cough 17.2%

Algorithm 1: Interpretability algorithm for training the dataset of the neural-network models

1. Input: the characteristics of the affected parts of the organ as per the medical image
2. Variables = the set of the characteristics of the affected parts of the organ
/*3. For each variable assign a relative weight*/

Relative weight = Weight o f the variable
∑ Weights o f all variables

/*4. Generate the probabilities of having the disease*/
−LR + = relative weights of the variables

+LR = 1 − (−LR)
5. Output: the positive and negative probabilities in addition to the relative weights of the variable
End
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Algorithm 2: Interpretability algorithm for training the dataset of the rules-based models

1. Input: the symptoms of the patient variable
2. Variables = the set of symptoms
/*3. For each symptom assign a relative weight*/

Relative weight = Weight o f the variable
∑ Weights o f all variables

/*4. Generate the probabilities of having the disease*/
−LR + = relative weights of the variables

+LR = 1 − (−LR)
5. Output: the positive and negative probabilities in addition to the relative weights of the variable
End

For example, if a patient exhibits signs and symptoms of COVID-19 e.g., dry cough,
fever (37.9 ◦C), headache, and myalgia, the physician suspects a COVID-19 case and
recommends the patient take a polymerase chain reaction (PCR) test. The physician may
use the interpretability-based model to explain the prediction for the patient. According to
our model, the positive likelihood ratio (+LR) based on Table 6 is:

17.2% + 16.5% + 2.9% + 17.2% + 6.5% = 60.3%

Whereas the negative likelihood ratio (−LR):

1− 60.3% = 39.7%

The physician can explain the likelihood ratios for the patient using the indication of
the relative weights of the symptoms. Table 7 includes all the possible predictions of our
model based on the trained dataset. Where (+) represents the existence of the symptom
and (−) represents its absence.

Table 7. All the probable predictions and explanations for COVID-19 patients according to their symptoms.

Explanation
N

um
ber

Fever
(37.3–38.0)

Fever
(38.1–39.0)

Fever
(>39.0)

D
ry

C
ough

Expectoration

T
hroatPain

C
hestD

istress

D
yspnea

Fatigue

N
ausea

and
V

om
iting

Palpitation

D
izziness

H
eadache

M
yalgia

A
bdom

inalPain
and

D
iarrhea

+LR
(%

)

−
LR

(%
)

1 + + + + + + + + + + + + + + + 100 0

2 + - + + + + + + + + + + + + + 88.9 11.1

3 + + - + + + + + + + + + + + + 97.5 2.5

4 + - - + + + + + + + + + + + + 86.4 13.6

5 + + + - + + + + + + + + + + + 82.8 17.2

6 + - + - + + + + + + + + + + + 71.7 28.3

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

8191 - + - - - - - - - - - - - - - 11.1 88.9

8192 - - - - - - - - - - - - - - - 0 100

‘.’ Represents a probable prediction that is not mentioned.
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7. Discussion

Our model represents a significant progress in explaining the decisions of the AI
models in medical diagnosis. Additionally, understanding the features responsible for a
particular prediction helps model designers iron out dependability problems so that end
users may acquire trust and make better decisions [26]. The interpretability-based model
contributes in: (i) reducing the cost of mistakes in the medical domain that is highly effected
by the wrong prediction. (ii) minimizing the influence of AI model bias by elaborating on
the decision-making criteria which builds trust for all users [37].

In this section, we highlight and compare our model with the other interpretability
methods that were described in Section 4. When we apply the datasets of symptoms
and CT images, we find that our model is able to distinguish the feature importance
which is represented by the relative weight of the variable. In addition, it satisfies the
model independent from other related algorithms as our model applies the statistics and
probability rules. Moreover, the new model is able to identify the relative features for each
instance. However, the accuracy of the predictions of the interpretability-based model is a
limitation, because it depends on the correctness of the trained dataset, which may not exist
in some medical images where the readings of the variables in the dataset are determined
by the related experience of the medical staff.

8. Conclusions and Future Works

In this paper, we build an interpretability-based model—a methodology for making
explanations to supplement existing interpretability techniques for the AI algorithms based
on the statistics and probability rules.

Our model provides the decisions and the explanations. Additionally, it provides
the likelihood of positive and negative infections and the ability to trace explanations to
specific samples. We demonstrated the use of our model using real datasets for COVID-19
patients, one for the CT image and another for the rules-based model for symptoms, where
the suggested model illuminates the explanation patterns across learned sets. Furthermore,
with explanations across subpopulations, convolutional neural network predictions are
more transparent. A possible next step is to reduce the complexity of the interpretable
rules-based algorithms that offset their interpretability. Another future work area is to apply
our model on other industries to optimize their AI systems. e.g., marketing, insurance,
financial services.
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